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Abstract —Techniques for determining field behavior in the
presence of coaxial-to-coaxial discontinuities are presented for
axisymmetric geometries. A bilinear functional is formulated
from which field solutions are obtained by way of the finite
element method. An absorbing boundary condition is applied at
the input and output port boundaries to reduce the size and
complexity of the problem. An additional approach, mode
matching, is outlined and presented as verification of finite
element results. Two geometries are investigated, for which
numerical results are presented. A comparative evaluation of
the two techniques is included.

I. InTRODUCTION

LECTROMAGNETIC energy is frequently trans-

ported within an electrical network by way of coaxial
transmission lines. However, the dimensions of the indi-
vidual components included in the network tend to vary.
These differences in dimension are most prevalent at the
interfaces between the respective regions containing the
components. The focus of our investigation is the field
behavior in the presence of these coaxial-to-coaxial inter-
faces. Specifically, we are interested in junctions which
occur between a system of cascaded coaxial lines as
encountered, for example, in high-frequency connectors
[1]. At such junctions problems such as dispersion, loss,
non-fundamental-mode propagation, and impedance dis-
continuities are commonplace and thus warrant special
attention.

The waveguide junction problem has previously been
investigated with an emphasis on rectangular geometries
[2]-[5]. The use of Cartesian coordinates is satisfactory in
these instances. However, since the task of designing
high-speed digital circuits is quite involved, any method of
simplifying the analysis is beneficial. It is therefore to our
advantage to make use of an alternative, more suitable
coordinate system and to adapt it to our problem, as
suggested by Konrad [6], Daly [7], and Gwarek [8]. Hence,
the numerical techniques employed in this research are
formulated in terms of cylindrical coordinates. These
techniques enable us to analyze many configurations re-
peatedly and consistently without major modifications to
the approaches. We are also able to predict the field
distribution throughout all regions and the corresponding
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Fig. 1. General three-region axisymmetric coaxial configuration.

energy reflection and transmission at the interfaces, from
which we may develop an equivalent circuit model for the
transmission line network. This information may be used
to optimize the design procedure.

One approach, the finite element method (FEM) [9],
provides a means of characterizing high-frequency con-
nectors without tedious trial and error experimentation. It
is also very general in that it enables us to solve problems
with irregular geometries that cannot be conveniently
handled using conventional approaches. Another tech-
nique, mode matching [10]-[12], serves as an excellent
means of verifying the results obtained through use of
the FEM.

II. NuMERICAL MODELING

The geometries of interest are axisymmetric; i.e., they
have no variation in the azimuthal direction. We may,
therefore, focus our attention on one azimuthal plane of
the problem. Fig. 1 shows a general three-region axisym-
metric coaxial configuration. We see that we may also
exploit the radial symmetry and model only the upper half
of the cross-sectional area shown. Region I contains both
the incident and reflected fields, and is referred to as the
input port. In a similar fashion region III contains the
transmitted field and is hence the output port. Region 1I
is the region of the discontinuity and has field activity in
both the positive and negative directions. Currently our
interest is directed toward situations where regions I and
III are homogeneous and only the fundamental propaga-
tion mode exists at the input and output ports. This
corresponds to transverse electromagnetic (TEM) mode
propagation.

There may exist, however, non-TEM-mode field activity
in the region of the discontinuity, region II. Owing to the
azimuthal symmetry of the problem, the non-TEM modes
in region II will be strictly transverse magnetic. The
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associated field components are H; and E, in regions I
and III, with E. also being present in region IL. We begin
our investigation by first formulating the problem in terms
of a finite element approach and following up with an
overview of the mode-matching technique.

1. Finirte ELEMENT METHOD
Beginning with Maxwell’s equations,

V x I-7=jwe(p,z)eoﬁ

VXE=—jou,H (1)
we may obtain the vector wave equation
V x VxH-k2H=0 (2)
€(p,z)

where k? = w?uge, and e(p, z) describes the relative per-
mittivity in all regions. Note that since the geometry is
axisymmetric, the permittivity is azimuthally independent;
i.e., it does not depend on ¢. By using Galerkin’s method
[13], we obtain the bilinear functional F(H, H,):

) 1
F(Hqﬁc’Ht:&):,/j;l (e(p,z)

(Vx Hgd) - kZHSH,

2 1
+z§1'/;:[(€(p’z)

where () is the cross-sectional area of the region and T,
are the port boundaries. Hj is a testing function. Note
that because of the azimuthal symmetry of the geometry,
the problem may effectively be considered as two-dimen-
sional, as indicated by the limits of integration in the
bilinear functional. Care must be taken when evaluating
the line integral term so that proper normal vectors are
taken for each port boundary surface.

To ensure that the FEM analysis is maintained over a
finite domain, we must satisfactorily truncate the finite
clement mesh. In other words, we must enforce boundary
conditions at the input and output ports such that the
field behavior is correctly represented at these locations.
The boundary integral term in the bilinear functional may
be rewritten as

fr,[(f(r)lﬂ)

VxH

pdpdz

v’xﬁ) ><H;,$}df=o (3)

?xﬁ)ngcﬁ]dl—)
/ 1
r,e(p,z)

At the input port I'; at z = —/,, the field is composed of
the incident and scattered fields, i.c., H, = H, + Hj. The
fundamental mode (TEM) is used for the incident field,
and the port is located at a distance sufficient for higher
order evanescent modes to be neglected. We may extend
the approach formulated by Mittra and Ramahi [14] for
the so-called absorbing boundary condition, which has
primarily been used for the electromagnetic scattering

oHy, \
(pH;—gz)-dl. (4)
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problem. Modifying this approach, we obtain

dH

¢
P 5
0z |z=- ()

where Hj, =e™'*1* /n,p is the fundamental mode excita-
tion of the magnetic field and ¢,; and 7, are, respectively,
the relative permittivity and the wave impedance at port
1; dl = - 2dp; and k, = ko\/z;;. Similarly, at the output
port I, at z=1,, the field is composed of only the
transmitted field; the absorbing boundary condition is
hence

| = dkei(Hy = 2H )l
1

oH,

=—jk,H,l.—,.
0z z=1I / 27 L

(6)

The parameter ¢,, is the relative permittivity at port 2;

dl = Z2dp; and k,= ko‘/gz‘. As with the input port, the
evanescent modes are neglected.

To avoid any problem with singular terms in the evalua-
tion of the bilinear functional F(Hy, H,) as p approaches
zero, the substitutions H, = Vo h » and Hg= N hy are
applied. The problem is now in terms of 4, which is the
quantity that will be approximated. The corresponding
bilinear functional F(hg,h,) is now

F(hS,hy)

1 9h 5 zah; 8h¢
= ——— | =hSh, + pP— — +
f/Q e(p,z) 479" P ap dp p

dh oh
¢ ¢ ¢ c
phy P +p P h¢)]—k3pzh¢h¢} dpdz

i
{frzp2h;h¢dp}

The physical system of arbitrary cross section with
inhomogeneous dielectrics may be approximated by lo-
cally homogeneous subregions throughout which e(p, z) is
constant. Triangular subregions are generally chosen be-
cause of their flexibility in modeling complicated bound-
aries. The choice of the order of approximation varies
from problem to problem. The use of few high-order
elements may produce better results than a correspond-
ingly larger number of low-order elements. Fig. 2 gives
examples of first-order and second-order triangular ele-
ments. First-order elements correspond to a linear ap-
proximation of the unknown, with three nodes per ele-
ment. Second-order elements correspond to a quadratic
approximation, with six nodes per element [9].

dz dz

+ —
2

26‘11"12

M

Jkq

(Vo h;)] dp}

[ p*hShy —

€1

kq

z=—1

+

-0. (7)

z=1

€2

IV. MobE MATCHING

The mode-matching approach adopted in this paper is
very similar to that of [12]. Hence only a brief discussion
of the method used to formulate the problem will be
presented in this section.



WILKINS et al.: NUMERICAL MODELING

The tangential electric and magnetic field components
in each region may be expressed in terms of an orthogo-
nal set of vectors which indicate the direction and trans-
verse behavior for each mode. We hence refer to €, and
h as the modal vectors for the sth mode of the electnc
and ranagnetic fields. We may express the fields in each
region as follows:
g’ievsll

Elp,z) =&y "+ ¥ b} (8)

el
Fd DR
L bj e
s=0

H¢(P’Z) Foe™ 7% — (%)

EII(p’ Z) _ Z [aII —ys Ty bSIIe,nyI(z—d)] ZII (10)

oo

Al(p,2)= ¥ [alle ' —plle¥ D] (11)
s=0

EIII(p z)— Z am—JII —yWz—d) (12)
s=0

Hi(p,z)= L alMhle "0 (13)

s=0

where vy, is the wavenumber for the sth mode. The modal
coefficients a, and b, correspond to, respectively, the
forward- and backward-traveling modes in each region.

Enforcing the condition of tangential field continuity at
the interfaces of regions I and II (z =0) and regions I
and III (z =d) (see Fig. 1), henceforth known as aper-
tures A and B respectively, we obtain

El(p,0) =25+ Z ble, = E, (p,0)

I
[\’]8

[a11+blle—y§1d] E’

(14)

0
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s=0
o
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—
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s=0
=H"(p,d)= ¥ al"h " 17
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where E o4 and E .5 are the aperture electric fields.
Defining an energy product

<f—: §> - f'[APERTURE(f—)X §) a8 (18)

fi First-order element
2 3
1
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hd> = i V¢la,

Fig. 2. Triangular mesh elements for finite element modeling.

we may use orthogonality relations to obtain expressions
for the modal coefficients in terms of the aperture electric
fields and modal vectors. Taking the energy product with
the tangential electric field continuity expression (egs.
(14) and (16)) using the corresponding magnetic modal
vectors for each region produces explicit expressions for
bl, al, bl and a!™. Substituting these expressions into
the magnetlc fleld continuity expressions (egs. (15) and
(17)) and rearranging, we obtain

KAA + KAB = ]?(I) (19)
Kpy+Aps=0 (20)
where
. = (E,,h)
Kaa= ¥ —2022F!
AT @LEY
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BB Pt 1— 27 .>11 II> s
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III (24)
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Since the energy product is an integral, we now have a
system of integral equations for the unknowns E 04 and
E B> which may be solved using a standard moment
method technique [15].

V. NUMERICAL RESULTS

Figs. 3 and 4 show geometries, similar to that which
may be found in high-frequency connectors, for which the
above two methods were applied. Both configurations
were excited by an incident TEM field. The reflection and
transmission coefficients were computed along with the
aperture electric field distributions at both the input and
output ports for a frequency of 4 GHz and a separation
distance of d=72 mm. The dielectric is Teflon, with
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Fig. 3. Cross-sectional view of coaxial line containing step discontinu-
ities.
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Fig. 4. Modified coaxial geometry with step discontinuities.

relative permittivity €, = 2.03. For all cases the ratios of
the outer to inner conductor radii are b; /a; = 2.30 and
b, /a, = 328. This corresponds to a characteristic
impedance of 50 ) for the respective homogeneous re-
gions. Figs. 5 and 6 are FEM results showing the variation
of the magnitude and phase of the aperture electric fields
versus the radial coordinate for the original geometry
(Fig. 3). First- and second-order triangular elements were
used for Figs. 5 and 6, respectively. Note that the second-
order results are obtained with significantly fewer triangu-
lar- elements (1011) than required by first-order results
(3415). In both cases there is an electric field discontinu-
ity at aperturc A, which is consistent with the natural
boundary conditions. The transmission and reflection co-
efficients are also indicated. Fig. 7 is a comparison of the
magnitude of the reflection coefficient using both FEM
and mode-matching techniques. Figs. 8 and 9 illustrate
similar results for the modified geometry (Fig. 4). Fig. 8
shows second-order FEM results, and Fig. 9, a compari-
son of FEM and mode-matching results. For the modified
geometry, the field discontinuity is now present at aper-
ture B.

Fig. 10 shows the variation of the magnitude of the
reflection coefficient of the modified geometry versus
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Fig. 5. Aperture electric field distribution for geometry shown in Fig. 3
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Fig. 6. Aperture electric field distribution for geometry shown in Fig. 3
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Fig. 7. Comparison of magnitude of reflection coefficient versus dis-

continwty spacing d as determined using FEM and mode matching
(original geometry).
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Fig. 8, Aperture electric field distribution for geometry shown in Fig. 4
. for d =2 mm using second-order elements (760 elements). I' =0.042
L—T7543°, T=0999L-11.27°.

discontinuity spacing d for several frequencies. A point of
interest is that the location of minimum reflection in the
connectors is independent of frequency. This is a topic for
further investigation.

VI. ConcLUSIONS AND DISCUSSIONS

The research conducted thus far has been strictly for '

the cases of lossless materials. This is by no means the
limitation of the formulation. These methods, particularly
FEM, may be extended to situations where either the
dielectrics, the conductors, or both are lossy. We are also
not limited by the number of materials which may exist
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Fig. 10. Variation of magnitude of reflection coefficient versus discon-

tinuity spacing d for modified geometry (various frequencies).

within a given configuration, and owing to the flexibility
of FEM, we may look toward solving problems with highly
itregular axisymmetric geometries which might otherwise
not be feasible by conventional methods. Furthermore,
we need not restrict the research to single-mode propaga-
tion since, with modifications to the absorbing boundary
condition, complete and accurate solutions may be ob-
tained for situations with multimode propagation. All of
the aforementioned are topics under current considera-
tion and are hereby proposed for future research,
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