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Abstract —Techniques for determining field behavior in the
presernlce of coaxial-to-coaxial discontinuities are presented for

axisymmetric geometries. A bilinear functional is formulated

from which field solutions are obtained by way of the finite

element method. An absorbing boundary condition is applied at
the input and output port boundaries to reduce the size and
complexity of the problem. An additional approach, mode
matching, is outlined and presented as verification of finite
element results. Two geometries are investigated, for which

numerical results are presented. A comparative evaluation of

the two techniques is included.

I. INTRODUCTION

E LECTROMAGNETIC energy is frequently trans-

ported within an electrical network by way of coaxial

transmission lines. However, the dimensions of the indi-

vidual components included in the network tend to vary.

These differences in dimension are most prevalent at the

interfaces between the respective regions containing the

components. The focus of our investigation is the field

behavior in the presence of these coaxial-to-coaxial inter-

faces. Specifically, we are interested in junctions which

occur between a system of cascaded coaxial lines as

encountered, for example, in high-frequency connectors

[1]. At such junctions problems such as dispersion, loss,

non-fundamental-mode propagation, and impedance dis-

continuities are commonplace and thus warrant special

attention.

The waveguide junction problem has previously been

investigated with an emphasis on rectangular geometries

[2]-[5]. The use of Cartesian coordinates is satisfactory in

these instances. However, since the task of designing

high-speed digital circuits is quite involved, any method of

simplifying the analysis is beneficial. It is therefore to our

advantage to make use of an alternative, more suitable

coordinate system and to adapt it to our problem, as

suggested by Konrad [6], Daly [7], and Gwarek [8]. Hence,

the numerical techniques employed in this research are

formulated in terms of cylindrical coordinates. These

techniques enable us to analyze many configurations re-

peatedly and consistently without major modifications to

the approaches. We are also able to predict the field

distribution throughout all regions and the corresponding
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Fig. 1. General three-region axisymmetric coaxial configuration.

energy reflection and transmission at the interfaces, from

which we may develop an equivalent circuit model for th~e

transmission line network. This information may be used

to optimize the design procedure.

One approach, the finite element method (FEM) W],

provides a means of characterizing high-frequency con-

nectors without tedious trial and error experimentation. It

is also very general in that it enables us to solve problems

with irregular geometries that cannot be conveniently

handled using conventional approaches. Another tech-

nique, mode matching [10]–[12], serves as an excellent

means of verifying the results obtained through use of

the FEM.

11. NUMERICAL MODELING

The geometries of interest are axisymmetriq i.e., they

have no variation in the azimuthal direction. We may,

therefore, focus our attention on one azimuthal plane of

the problem. Fig. 1 shows a general three-region axisym-

metric coaxial configuration. We see that we may al:so

exploit the radial symmetry and model only the upper half

of the cross-sectional area shown. Region I contains both

the incident and reflected fields, and is referred to as the

input port. In a similar fashion region 111 contains the

transmitted field and is hence the output port. Region II

is the region of the discontinuity and has field activity in

both the positive and negative directions. Currently our

interest is directed toward situations where regions I and

III are homogeneous and only the fundamental propaga-

tion mode exists at the input and output ports. This

corresponds to transverse electromagnetic (TEM) mdde

propagation.
There may exist, however, non-TEM-mode field activity

in the region of the discontinuity, region II. Owing to the

azimuthal symmetry of the problem, the non-TEM modes

in region II will be strictly transverse magnetic. The
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associated field components are Ho and EP in regions I

and 111, with E: also being present in region II. We begin

our investigation by first formulating the problem in terms

of a finite element approach and following

overview of the mode-matching technique.

III. FINITE ELEMENT METHOD

Beginning with Maxwell’s equations,

?Xfi= jae(p, z)~oE

V X ,!2’= – jf3p017

we may obtain the vector wave equation

1
+x —ex R–k:l?=6

E(p, z)

up with an

(1)

(2)

where k; = ti2pO~0 and e(p, z) describes the relative per-

mittivity in all regions. Note that since the geometry is

axisymmetric, the permittivity is azimuthally independent;

i.e., it does not depend on ~. By using Galerkin’s method

[13], we obtain the bilinear functional F(H~, Ho):

where Q is the cross-sectional area of the region and r,

are the port boundaries. Hi is a testing function. Note

that because of the azimuthal symmetry of the geometry,

the problem may effectively be considered as two-dimen-

sional, as indicated by the limits of integration in the

bilinear functional. Care must be taken when evaluating

the line integral term so that proper normal vectors are

taken for each port boundary surface.

To ensure that the FEM analysis is maintained over a

finite domain, we must satisfactorily truncate the finite

element mesh. In other words, we must enforce boundary

conditions at the input and output ports such that the

field behavior is correctly represented at these locations.

The boundary integral term in the bilinear functional may

be rewritten as

At the input port rl at z = – 11, the field is composed of
the incident and scattered fields, i.e., Ho = H; + H$. The

fundamental mode (TEM) is used for the incident field,

and the port is located at a distance sufficient for higher

order evanescent modes to be neglected. We may extend

the approach formulated by Mittra and Ramahi [14] for

the so-called absorbing boundary condition, which has

primarily been used for the electromagnetic scattering

problem. Modifying this approach, we obtain

dH@

a2 ,=-11
= jk1(H4–2H$)lZ=_1, (5)

where Hi = ~ –Iklz /qlp is the fundamental mode excita-
tion of the magnetic field and Crl and VI are, respectively,

the relative permittivity and the wave impedance at port
+

1; dl = – ldp; and kl = kO~. Similarly, at the output

port rz at z = 12, the field is composed of only the

transmitted field; the absorbing boundary condition is

hence

aH4

a2 Z=l,

= –jk2H@l,=12. (6)

The parameter .E,z is the relative permittivity at port 2;

~1 = .2dp; and k2 = kO&. As with the input port, the

evanescent modes are neglected.

To avoid any problem with singular terms in the evalua-

tion of the bilinear functional F(H~, H+) as p approaches

zero, the substitutions H+ = fih ~ and H; = fih ~ are

applied. The problem is now in terms of h ~, which is the

quantity that will be approximated. The corresponding

bilinear functional F(h$, h ~) is now

F(h~>h@)

jkO

( } .+ ~ ~;2%’@’dPr
-=,2=0” (7)

The physical system of arbitrary cross section with

inhomogeneous dielectrics may be approximated by lo-

cally homogeneous subregions throughout which ●(p, z) is

constant. Triangular subregions are generally chosen be-

cause of their flexibility in modeling complicated bound-

aries. The choice of the order of approximation varies

from problem to problem. The use of few high-order

elements may produce better results than a correspond-
ingly larger number of low-order elements. Fig. 2 gives

examples of first-order and second-order triangular ele-

ments. First-order elements correspond to a linear ap-

proximation of the unknown, with three nodes per ele-

ment. Second-order elements correspond to a quadratic

approximation, with six nodes per element [9].

IV. MODE MATCHING

The mode-matching approach adopted in this paper is

very similar to that of [12]. Hence only a brief discussion

of the method used to formulate the problem will be

presented in this section.
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The tangential electric and magnetic field components

in each region may be expressed in terms of an orthogo-

A

First-order element ho=
t

V@,a,

nal set of vectors which indicate the direction and trans-
,=

~erse behavior for each mode. We hence refer to i?$ and 2 3

h, as the modal vectors for the sth mode of the electric 1

and magnetic fields. We may express the fields in each
A

Second-order element ho=
~

V4,a1

region as follows:
4 56

co

ij(p,z)=i?~e 1+1 #Z
‘y~z + ~ b~e$e s (8) Fig. 2. Triangular mesh elements for finite element modeling.

~=o

we may use orthogonality relations to obtain expressions

for the modal coefficients in terms of the aperture electric

fields and modal vectors. Taking the energy product wit h

the tangential electric field continuity expression (eqs.

(14) and (16)) using the corresponding magnetic modal
vectors for each region produces explicit expressions for

b;, a~l, b~l, and anl. Substituting these expressions into

the magnetic field’ continuity expressions (eqs. (15) and

(17)) and rearranging, we obtain

XBA+XBB= ii (20)

where
where y, is the wavenumber for the sth mode. The modal

coefficients a, and b, correspond to, respectively, the ~

forward- and badcward-traveling modes in each region. “,:0 ‘>;:: ~:AA —

Enforcing the condition of tangential field continuity at
.$? s

the interfaces of regions I and II (z = O) and regions II

()

1+ e-zy~” (E’P~,~~)

and 1[11(z = d) (see Fig. 1), henceforth known as aper- +5~=o l_e-@d
z: (21)

(Z:’, i:)
tures A and B respectively, we obtain

I?;(P, O) =Z:+ 5 b;Z:=E~(p,O)
s=o(l~::):f:::z’ ‘z’)

XAB=–2 ~

S=()

= fl’(p, O) = ~ [a~l – b~le-y~’d]~~ (15) w (~pB, z;l) ~,,,
S=o

+Z +111 ‘III s “

~~(P,d) = 5 [a~le-Y~ld+ b~l #

(24)

1

~=o (es ,hs )

s Since the energy product is an integral, we now+have a
S=o

s~stem of integral equations for the unknowns EPA and

= ~~I(p,d) = ~ a~I1#II = ~ ~~ (16) ‘,B~ which may be solved using a standard moment

S=o s method technique [15].

l?’(p, d) = ~ [a~le-Y~l~– b~]~~l V. NUMERICAL RESULTS
S=o

Figs. 3 and 4 show geometries, similar to that which

= ~~(p,d) = ~ a~llZ~ (17) may be found in high-frequency connectors, for which the
~=o above two methods were applied. Both configurations

whe~e E+P~ and ~P~ are the aperture electric fields. were excited by an incident TEM field. The reflection and

Defining an energy product transmission coefficients were computed along with the

aperture electric field distributions at both the input and

(.Ea =/-JA,ERTuRE(j+F)“ d~ (18) output ports for a frequency of 4 GHz and a separation
distance of d = 2 mm. The dielectric is Teflon, with
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Fig. 4. Modified coaxial geometry with ~tep discontinuities.

relative permittivity E, = 2.03. For all cases the ratios of

the outer to inner conductor radii are bl / al = 2.30 and

bz / a2 = 3.28. This corresponds to a characteristic

impedance of 50 0 for the respective homogeneous re-

gions. Figs. 5 and 6 are FEM results showing the variation

of the magnitude and phase of the aperture electric fields

versus the radial coordinate for the original geometry

(Fig. 3). First- and second-order triangular elements were

used for Figs. 5 and 6, respectively. Note that the second-

order results are obtained with significantly fewer triangu-

lar elements (101 1) than required by first-order results

(3415). In both cases there is an electric field discontinu-
ity at aperture A, which is consistent with the natural

boundary conditions. The transmission and reflection co-

efficients are also indicated. Fig. 7 is a comparison of the

magnitude of the reflection coefficient using both FEM

and mode-matching techniques. Figs. 8 and 9 illustrate

similar results for the modified geometry (Fig. 4). Fig. 8

shows second-order FEM results, and Fig. 9, a compari-

son of FEM and mode-matching results. For the modified

geomet~, the field discontinuity is now present at aper-

ture B.

Fig. 10 shows the variation of the magnitude of the

reflection coefficient of the modified geometry versus
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Fig. 5. Aperture electric field distribution for geometry shown in Fig. 3
for d = 2 mm using first-order elements (3415 elements). r = 0.043L –

53.81°. T = 0.999L -14.63°.
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Fig. 6. Aperture electric field distribution for geometry shown in Fig. 3
for d = 2 mm using second-order elements (1011 elements). I’= 0.012
L –3.331°. T = 0.999L – 17.34°.
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Fig. 8, Aperture electric field distribution for geometry shown in Fig. 4

for d== 2 mm using second-order elements (760 elements). ~ = 0.042
L -75,43”. T = 0.9’99L -11.27°.

discontinuity spacing d for several frequencies. A point of

interest is that the location of minimum reflection in the

connectors is independent of frequency. This is a topic for

further investigation.

VI. CONCLUSIONS AND DISCUSSIONS

The research conducted thus far has been strictly for

the cases of Iossless materials. This is by no means the

limitation of the formulation. These methods, particularly

FEM, may be extended to situations where either the

dielectrics, the conductors, or both are Iossy. We are also

not limited by the number of materials which may exist

Fig. 9. Comparison of magnitude of reflection coefficient versus dis-
continuity spacing d as determined using FEM and mode matching

(modified geometry).
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Fig. 10. Variation of magnitude of reflection coefficient versus disccm-

tinuity spacing d for modified geometry (various frequencies).

within a given configuration, and owing to the flexibility

of FEM, we may look toward solving problems with highly

irregular axisymmetric geometries which might otherwise

not be feasible by conventional methods. Furthermore,

we need not restrict the research to single-mode propaga-

tion since, with modifications to the absorbing boundary

condition, complete and accurate solutions may be. db-
taingd for situations with multimode propagation, All of

the aforementioned are topics under current considera-

tion and are hereby proposed for future research,
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